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DIOCOTRON INSTABILITY OF AN INTENSE RELATIVISTIC 
ELECTRON BEAM IN AN ACCELERATOR 

H. C. Chen and H. S. Uhm 
Naval Surface Weapons Center 

White Oak,.Silver Spring, Maryland 20910 

Abstract 

High current annular electron beam in an accelerator is subject to 

various instabilities. A general fluid-Maxwell theory of the diocotron 

instability is developed for an infinitely long and azimuthally symmetric 

annular electron beam propagating along an external magnetic field. In 

contrast with the treatment used in the conventional diocotron instability, 

the assumptions of tenuous electron beam and strong magnetic field have been 

eliminated. Furthermore, the restriction of infinite axial wavelength 

perturbation has been removed and the approximation of u ~ ckß is no longer 

applied. Instead, we conduct full electromagnetic perturbation in the 

macroscopic cold fluid description of plasma dynamic with the beam parameters 

of general interest. In the special case of a sharp boundary density profile, 

the diocotron instability which dominates in the low frequency region are 

investigated in a broad range of beam parameters and geometries. The results 

are significantly different from that obtained from the conventional diocotron 

instability. The kink mode can be destablizied and the growth rates are much 

larger for every azimuthal mode. 
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I. INTRODUCTION 

Intense relativistic electron beams have been developed in recent years 

as a new source of electromagnetic radiation which can be applied to high 

current electron beam accelerator, collective accelerator, gyrotron and free 

electron laser, etc. In most particle accelerators, a high-current beam is 

injected into a low-pressure gas or into an evacuated tube along a strong 

external magnetic field. The guide magnetic field provides the confinement of 

the beam which prevents the beam from spreading radially. Otherwise, the 

instability can be very destructive to the beam. Nevertheless, the regions of 

stability and instability have been found in some of the experiments and the 

problem of stability has been considered in most of the theoretical 

investigations. 

Experiments have been going on recently to generate and transport intense 

relativistic electron beams in gaseous or plasma medium. It has been found 

that the resistive hose instability is one of the most dangerous perturbations 

to the propagation beam-  However, the stability analyses and plasma particle 

simulations indicate that the increase of the beam current can reduce the hose 

growth rate to a large extent. As a result, the beam with high current 

(> 30 KA) becomes an ultimate choice for the ejection of a relativistic 

electron beam to the plasma medium. Historically, high current beams have 

been produced as annular beams guided by a strong magnetic field to reduce 

beam perpendicular motion. However, it is very often and rather common to 

have large amplitude beam transverse oscillations observed right after the 

accelerator. The transverse perturbation can be very destructive to the beam, 

especially in the region where a rapid magnetic field transition occurs. The 
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necessity of eliminating this initial perturbation is crucial if stable beam 

propagation needs to be achieved. In order to have a full understanding of 

the beam propagation physics, the careful characterization of the beam 

parameters before ejection to the plasma channel is absolutely essential. 

The diocotron instability of a hollow electron beam has been known for a 

long time since the early crossed field microwave magnetron. For an annular 

electron beam in the cylindrical geometry, Buneman3 has considered the 

diocotron instability in the regime of u b ~ a>c while Levy
4 has examined the 

instability in the case of low beam density and strong magnetic field, 

i.e., to . < < u where u h and u> stand for the electron plasma and cyclotron 
pu      C        pD      C 

frequency respectively. Since then numerous theoretical work has been done 

theoretically and most of them consider only perturbations with sufficiently 

long wavelength (k ~ 0). Experimentally, there is some evidence that the 

lower order diocotron modes have been found in the damaged plate after the 

target interaction of the annular electron beam. Recently, the filamentation 

instability (A > 2) of an annular electron beam along a uniform magnetic field 

has been studied5 by using the Vlasov-Maxwell equations. Here, a more 

complete full electromagnetic treatment of the fluid-Maxwell theory is 

conducted without any approximations which have been made previously. We want 

to consider the perturbations not only in the azmuthal (£ * 0) but also in the 

axial directions (k *  0). In addition, the model developed here emphasizes 

the case for high current electron beam, therefore the assumption 

of ID  < in is no longer true. Most importantly, the validity of the previous 

u ~ ckß assumption in the treatment of the conventional diocotron instability 

is examined. 



. A macroscopic cold fluid-Maxwell  theory is used to perform the linear 

stability analysis of an infinitely long intense annular electron beam 

propagating along an external  magnetic field.    A brief description of the 

equilibrium configuration and an outline of the assumptions are given in 

Section  II.    In the rigid-rotor and cold laminar flow limit, a dispersion 

relation is derived in Section III  for the general  case which results in a 

yeneral   integro-differential  equation for the perturbed field.    In the special 

case of a rectangular density profile, a closed algebraic dispersion relation 

for the complexed eigenfrequency is extracted.    The dispersion relation 

obtained can be used to investigate the instability for a broad range of 

system parameters.    The numerical  solutions for the instabilities are 

presented in Section  IV.    Finally, the discussion and a few remarks on the 

finite geometry effect of an accelerator are concluded in Section V. 



II. EQUILIBRIUM AND ASSUMPTION 

As illustrated in Figure 1, the equilibrium configuration consists of a 

cylindrically symmetric annular electron beam located between radii R^ and R2 

in a perfect conducting cylinder of radius Rc. The beam is assumed infinite 

in the axial direction and aligned parallel to a uniform applied magnetic 

field. The magnetic field provides the confinement of the annular beam and 

forbids the spreading in the radial direction. The radial thickness of the 

annular beam (R2 - R^ = 2a) is assumed small in comparison with the mean 

equilibrium radius RQ. As a result, the beam rotation is weakly dependent on 

r in a slow motion equilibrium which allows us to approximate wb(r) in 

Eq. (12). The beam under consideration is characterized by the charge q, 

mass m, axial velocity cß and density profile n respectively. It is further 

assumed that V/Y< < 1 where v is Budker's parameter. In the cold-fluid model, 

the flow of electrons can be considered laminar provided that the beam current 

is much smaller than the Alfven-Lawson space-charge limiting current 

I < 170Ü0 SY 

Furthermore, the beam electrons motion are taken to be paraxial so that the 

axial velocity is very large compared to the transverse velocity and is 

considered to be a constant i.e., Pj; + p| < < ?\  where P = (Pp, Pe, P.z) is the 

particle momentum. It is noted that the perpendicular motion of beam electron 

is treated nonrelativistically. We introduce a cylindrical polar coordinate 

system (r, 8, z) with the z axis coinciding with the axis of symmetry. 

Analysis of beam dynamic properties is based on a macroscopic cold fluid 

model. The equation of electron and momentum conservation for the electron 

fluid can be expressed in the relativistic form as 



§£ + V■ .   (n y)  = 0 (1) 

(ft + 1' v) Ymi = ^ U +1x !/c) (2) 

where n(_x,t)  and V^t)  are the density and mean velocity of an electron fluid 

element.    E.(x.,t)  and B.(x_,t)  are the electric and magnetic fields 
l V 

respectively,   Y = (l -3 )"   2and s =— are the standard relativistic 

quantities and c is the speed of light in vacuum.    The self-induced electric 

and magnetic field can be related to the beam density and current by Maxwell's 

equations..   By including the Maxwell  equations we have a complete closed 

system of equations. 

In the steady state [jt ~ 0)  tne beam 1S assumed azimuthally 

symmetric (JQ" 0)  and infinite long and uniform in the axial  direction 

(7j-r = 0).    The equilibrium force balance due to electric and magnetic field in 

the radial  direction gives the angular velocity wb(r)  of an electron fluid 

element in slow rotational  equilibrium 

wb(r) = "pb (1  - R?/r2)/(2Y2^c) R]  < r < R2 (3) 

2       2 where u . = 4irn q /ym and u> = qBg/cym are the electron plasma frequency 

square and cyclotron frequency respectively, and BQ is the guided magnetic 

field. The radial force due to Er and BQ is equivalent to an effective radial 

En 
field _L which combined with B7 leads to an azimuthal drift. The effect of 

2 

positive' ions which form an immobile partially neutralizing background is not 

considered here. It is further assumed that the ion current is equal to zero 

in the laboratory frame. 



III.    STABILITY ANALYSIS 

We assume, without loss of generality, that all  the perturbed quantities 

have the following wave form in the cylindrical  geometry with the sinusoidal 

time dependence and spatial  variation 

6$ U,t) = 6$(r) exp [i(Ä9 + kz - cot)] (4) 

where the oscillating angular frequency UJ is assumed to be complex 

with Im(ü)) > 0, z  is the azimuthal harmonic number and k is the propagation 

wavenumber in the axial direction. We use the linearized fluid-Maxwell 

equations to investigate the general electromagnetic perturbation 

for a >  1 and any arbitrary wavenumber k. Let us choose the transverse 

magnetic (TM) modes such that the magnetic field lies in the cross-sectional 

plane since all the transverse fields for the TM mode can be expressed in 

terms of the z-component of the electric field. The determination of the 

transverse fields therefore can be expressed only in terms of 6E according to 

B . (^ - k*)"1 1 I e3 x vt Ez (5) 
c 

Et -(4- 
k2)_1 V9Ez/9z) (6) 

where V. is the transverse two-dimensional gradient operator. From the 

perturbed Maxwell equation, it is straightforward to express after some 

algebraic manipulations that the relationship between the perturbed 

field SE and the source terms <5n and 6JZ 



2 
(V2 + üy)   6E    =  47rik(q6n  - ÜU ÖJ   ) (7) 

c^ kc 

6J    is the perturbed current in the axial  direction such that 

5Jz =  q(6nVz +  n <5VZ) <8) 

where 6n and 6V    can be obtained by solving a set of first order perturbation 

equation from Eqs. (1) and (2).    With the help of Eqs. (5)  and (6), 6n and 6JZ 

can be expressed in terms of 6EZ-   Therefore, Eq. (7)  for 6EZ, together with 

boundary conditions on the field component represented by the scalar 

function 6E  , specifies a two-point boundary eigenvalue problem which can be 

solved numerically.    For the special  case of a square density profile for the 

hollow beam, the above-mentioned procedure with some straightforward but 

tedious algebraic manipulations rewrites Eq.  (7)   in the final   form as 

r c 

„.    c 2      u) L. Äü)ü)k 2 
(9) 

where the following abbreviations have been used 

2 ? 
s   _ V (ck - ußT (10) 

1       U)2     (ck)2  - co2 

Q = a) - £a>b(r) - ckß 

flQ = a» - £ü>b(R0)  - ckB 

(ID 

(12) 



Equation (9) is a second order differential equation for 6EZ. 

Therefore, two boundary conditions namely <$E_(0) and <$E_(Rr) are needed to 

specify a two-point boundary eigenvalue problem. The contribution to the 

first term of the RHS of Eq. (9) becomes two delta functions at the sharp 

boundaries of the beam. The second term on the other hand is evaluated at RQ 

approximately for a thin annular beam. For a given wavenumber k, only certain 

oscillating frequency u will be consistent with the differential equation 

subject to satisfy the boundary condition. 

It is noted that the self-induced magnetic field BQ has been neglected 

and the condition of slow beam rotation (ojb < < u> ) has been used in deriving 

Eq. (9). We are ready to solve Eq. (9) for the special case of a square 

density profile hollow beam. Because of the approximation we made in Eq.(12), 

Eq. (9) becomes the familiar Bessel's equation.  The piece-wise solutions for 

the homogeneous equation of Eq. (9) can be expressed in terms of modified 

Bessel functions. The eigenfunctions which satisfy Eq. (9) in the three 

regions can be written down as 

A IÄ(n'r) 0 < r < R1 

5Ez(r) = C IÄ(nr) + D kÄ(nr) R] < r < R2     (13; 

E IÄ(n'r) + F k£(n'r)        R2 < r < Rc 

where A, C, D, E and F are arbitrary constants, and 



n'2 - k2 - o>2/c2 

(14) 

2 _  n .2 
n = 

(1 + $,) 

pb ÄÜJUi. 

TTTH-t^d* 272   2 

2 

)J 1 

where n' and n are complex variables. The solutions (13) are required to De 

continuous and bounded throughout an interval Rj_ < r < R2 and to satisfy 

certain boundary conditions at r = 0 and r = Rc. In addition, the effect of 

the delta function can be considered by multiplying both sides of r and 

integrating over the infinitesimal interval from r(l - e) to r (1 + e) with e + 0 

in the vicinity of r = R] and R2 respectively. Applying the jump conditions 

which yields 

r(l + S,) |p «Ez(r) 

R + e 

R - e 

<o. 
= ^^(0 (Iö: 

where R = Rx and R2 for the two sharp boundaries respectively. Therefore, we 

have obtained 5 linear equations for 5 unknowns A, C, D, E, and F. The 

dispersion relation is obtained by writing down the condition for the linear 

homogeneous equations. After some algebraic manipulations, the final result 

can be expressed as 

n'R^l + S,) k'ln'Rj) - k£(n'R1)A1 

- n'R2(l + S^ Ij[(n'R2), + I£(n*R2)A2 
= - n'R2(l + S^ lcJ(n'R2)+ kÄ(n'R2)A2 

(16) 
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where I., k. are the modified Bessel   function and 

r(x) = d I  (x)/dx,  k;(x) = d k (x)/dx.    The following abbreviations have been 
X,                                                 A/                                                 A* A/ 

used 

A1 = % S^R^ o)c/ß + n' R1   IJ (n'R^/I^n'R^ 

(17) 
IÄ(n'Rc)   kJ(n'R£) -  i;(n*R2)  kA(n*Rc) 

A2 = I S1(R2) U(./fl + I  (n'R )   k (n'R )  - I  (n'R2)   k£(n-Rc) 
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IV.    NUMERICAL RESULTS 

The general  treatment of the electromagnetic perturbation in cylindrical 

geometry for the diocotron instability has been conducted in Section III using 

the fluid-Maxwell theory.    The dispersion relation of Eq.  (16)  is solved 

numerically to determine the growth rate and oscillating frequency of the 

instability as a function of wavenumber k for a variety of beam parameters. 

(a)    Non-relativistic case: 

For a non-relativistic electron beam (e.g., Y = 1.1), the growth rate and 

Doppler-shifted real   frequency, both have been normalized to the beam plasma 

frequency, are plotted versus normalized axial  wavenumber in Figures 2a and 

2b, respectively.    We are interested primarily in the lower azimuthal mode, 

namely, i = 1 and a few higher modes.    The beam parameters used in Figure 2 

are summarized below 

Y = 1.1 

>R0/C = -05 

Mpb/ttc =  *5 

a/RQ =  .05 

R0/Rc =  .8 

Note that the Doppler-shifted real frequency (u - cks) remains very small 

which characterizes the low frequency diocotron perturbations. It is further 

noticed that the instability does not occur in the limit of k + 0. In 

contrast with the conventional diocotron instability, the l  = 1 kink mode can 

be destabilized for the high current beam case. The instabilities and 
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associated real Doppler-shifted frequencies as shown in Fig. 2 are almost an 

even function of wavenumber k except near k = 0. The reason becomes apparent 

if we examine Eq. (9) carefully. As far as the wavenumber dependence is 

concerned, the non-symmetric terms with respect to k have been listed in 

Eqs. (10) thru (12). Nevertheless, because of 3 •*■ 0 for the non-relativistic 

beam, one can see easily that Eqs. (10), (11) and (12) become symmetric with 

respect to k especially for larger wavenumber k. However, as wavenumber 

decreases (k -► 0), the non-symmetry property of the instability begins to 

show in Fig. 2 because Eq. (10) becomes non-symmetry with respect to k 

again. As comparing to the previous theory, if the approximation 

of u = ckß is applied to Eq. (9), then Eq. (9) becomes Eq. (2.6.20) of 

Davison7 of the conventional diocotron instability in the electrostatic 

approximation. Eq. (9) can also be further reduced to Eq. (8) of Reference 8 

in the long wavelength perturbation (k ■»• 0) for a tenuous beam in a strong 

guiding field (<*> . < < w ). The growth rates decrease very much 

when Y increases and the unstable regions shift towards smaller value of k. 

(b) Relativistic case: 

For the high current electron beam, as the value of RQü) UC  increases, 

Eq. (9) involving the non-symmetric term with respect to k becomes more 

important. One can expect the non-symmetric results for the diocotron 

instability. For the purpose of comparison, we use the same beam geometry as 

in Figure 2 but change the beam parameter to the following values 

Y = 3 

>VC = °*9 
<»> u/u. = 0.5 pb c 
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The results of calculations for the instability are shown in Figure 3. As we 

expected, the symmetry property of the wave with respect to wavenumber has 

disappeared. Obviously, Eqs. (10) thru (12) which express the non-symmetrical 

dependence with respect to k becomes more non-symmetric as 'ß ■»• 1 for the 

relativistic beam case. Unlike the previous results8'9 of the conventional 

diocotron instability, the kink mode becomes unstable with relatively large 

growth rate. As A increases (A > 2), there are two branches of instability 

which can be excited. The one with smaller growth rate which exists in both k 

directions is identified as the conventional diocotron instability. The other 

branch of the modified diocotron instability has much larger growth rate and 

can be excited near small k region only. The reason of being might be due to 

the full electromagnetic treatment of the perturbation for the high current 

beam. Besides, the approximation o> ~ ckß used in the conventional diocotron 

instability is no longer applied here. Finally, we we can see in Fig. 3, the 

new diocotron instabilities for different azimuthal modes occur almost at the 

same wavenumber (i.e., ck/wpb ~ 0.25). As we can observe in Eq. (10), there 

is a singularity for ck ~ u. That is why the instability can De excited in 

the positive wavenumber only. 

14 



V. CONCLUSIONS 

The equilibrium and stability properties of a relativistic nonneutral 

electron beam have been examined within the framework of the linearized fluid- 

Maxwell equations. The analysis is carried out for electromagnetic 

perturbation about an infinitely long annular beam aligned parallel to a 

uniform magnetic field. One of the most popular cold-fluid instabilities 

characteristic of a rotating nonneutral hollow beam is the diocotron 

instability which has been studied previously only in the low-density 

regime (<u  < < a> ). However, it is important to emphasize that the present 

analysis is not restricted to the low-density reyime. The resultant 

instability for a high current relativistic annular electron beam is somewhat 

different from the conventional diocotron instability. The most dangerous 

kink mode (£ =1) can be destabilized and the growth rates for I >  2 modes are 

several times larger than the conventional diocotron modes. 

The stability analysis of a high-power, high-current electron beam inside 

an accelerator undoubtly becomes an important subject under investigation, 

because the instability of the electron beam can cause various kinds of 

difficulty which will influence the operation for the production and 

acceleration of an annular beam. The general purpose of this paper is to 

demonstrate that the high-current annular electron beam can be unstable at 

parameters of practical interest. Furthermore, from the beam propagation 

point of view, it is always valuable to understand the initial parameters of 

the propagating beam. If a beam comes out from an accelerator and suffers 

initially a large transverse oscillation, then this off-center beam 

propagating into the magnetic field gradient at transition section to the 
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plasma would either cause beam expansion or trigger a stronger kink 

instability. In this case, to produce a high-quality, high-current 

relativistic electron beam becomes an important issue then the beam 

propagation. Especially, knowing that the growth rate for the diocotron mode 

increases as the current increases. 

Finally, if we examine Figure 3b carefuly, we can estimate the group 

velocity which approaches the beam velocity for the maximum yrowth rate of the 

diocotron mode, i.e. |£ = V ~ 3c In other words, the instability follows 

closely with the beam head where the maximum yrowth occurs for the 

perturbation. It is vital to the beam head and therefore crucial to the 

operation of the high-current accelerator. However, the beam we considered 

here has been assumed to be infinitely long. In the real application, when 

the diocotron mode with axial wavelength laryer than the drifting tube of the 

accelerator, the theory derived here may not be necessarily still valid and 

the important effect of finite geometry on the diocotron instability has to be 

taken into account. Further studies similar to the treatment in Reference 10 

should be considered for this type of problem. 
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FIGURE CAPTIONS 

Figure 1.       Longitudinal and cross section of equilibrium configuration 

^ and coordinate system 

!> 
Figure 2a. The diocotron growth rate versus wavenumber for different 

azimuthal  number.    The beam parameters are Y = 1.1» 

a/RQ =  .05, cü .   R0/c =  .05, wpb/uc =  .5 and RQ/RC =  .8. 

Figure 2b. The real  Doppler-shift real  frequency of the diocotron 

instability corresponds to Figure 2a. 

Figure 3a. The diocotron growth rate versus wavenumber for different 

azimuthal  number.    The beam parameters are 

Y = 3,  a/RQ =  .05, wpbR0/c =  .5, <*pb/\ =  .5 and R(j/R(; =  .8, 

Figure 3b. The real  Doppler-shift real   frequency of the diocotron 

instability corresponds to Figure 3a. 
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